A NOVEL SYNTHESIS OF N-SUBSTITUTED α -AMINO KETONES

Sergio Lociuro, Lucio Pellacani^{*}, and Paolo A. Tardella Istituto di Chimica Organica dell'Università di Roma, I-00185 Roma, Italy

SUMMARY. The thermolysis of ethyl azidoformate in enol trimethylsilyl ethers, followed by silica gel treatment, offers a new route to N-ethoxycarbonyl α -amino ketones.

Insertion and addition reactions of ethoxycarbonylnitrene (EtOCON) are usually not very selective. In particular, ketones¹ and ketone ethylene acetals² are known to give reaction mixtures containing variable amounts of 2-functionalized products, according to the reaction conditions. α -Amino ketones are important intermediates in preparative organic chemistry³ and they are biologically significant substances.⁴ Recently we found N-ethoxycarbonyl α -amino ketones (together with similar amounts of substituted hydrazines) in the reaction between enamines and 4-nitrobenzenesulphonyloxyurethane without Et_zN.⁵

We report here that N-protected α -amino ketones are obtained in a single step and in good yields upon thermolysis of ethyl azidoformate (EtOCON₃) in enol trimethylsilyl ethers. We tested enol ethers derived from alkyl, cycloalkyl, and alkyl aryl ketones, namely (1-tert-butyl)ethenyl trimethylsilyl ether (<u>1a</u>),⁶ (1-propyl)-1-butenyl trimethylsilyl ether (<u>1b</u>),⁷ 1-cyclohexenyl trimethylsilyl ether (<u>1c</u>),⁸ (4-tert-butyl)-1-cyclohexenyl trimethylsilyl ether (<u>1d</u>),⁹ 1-cyclopentenyl trimethylsilyl ether (<u>1f</u>),⁸ and 1-phenylethenyl trimethylsilyl ether (<u>1e</u>).⁸

The thermolyses were carried out at 110 °C for 15 h in sealed tubes containing a mixture of $EtOCON_3$ and substrate (volume ratio 1:10). After distillation of the excess of substrate, the crude reaction mixtures were chromatographed on silica gel¹⁰ and N-ethoxycarbonyl α -amino ketones were collected as pure products (<u>2a</u>: 65%, <u>2b</u>: 56%, <u>2c</u>: 49%, <u>2d</u>: 36%, <u>2e</u>: 35%, <u>2f</u>: 40% not optimized isolated yields). Only in the case of <u>1f</u>, an additional product, 3-ethoxy-1-trimethylsiloxy-2-oxa-4-azabicyclo [3.3.0] oct-3-ene (<u>3</u>) was isolated in 18% yield; it probably arises from 1,3-dipolar addition of EtOCON to the good dipolarophilic double bond.¹¹

We assume EtOCON to be the reactive intermediate in the formation of N-substituted α -amino ketones, as EtOCON₃ and enol trimethylsilyl ethers do not react either at room temperature for several days or at 60 °C for several hours; a complex reaction mixture was found after several hours at 69 °C, but α -amino ketones were minor components. In one case we have been able to detect (by GC-MS) the product of nitrene addition to the enol ether <u>1b</u>, but it was never possible to isolate it. We tentatively propose the mechanism depicted below:

A similar reaction sequence has been postulated for ring cleavage of a cyclopropane 1,2-disubstituted with an acetyl group and a trimethylsiloxy group (silatropic retro-aldol reaction).¹²

As further support to our assumption, recently we found another example of clean EtOCON addition to electron-rich olefins such as vinyl chlorides 13 and other scattered examples have been reported in the literature. 14

On the other hand enol trimethylsilyl ethers are known to react with arenesulphonyl azide¹⁵ and with carbenes;¹⁶ in both cases the primary reaction products undergo synthetic useful rearrangements.

Compounds $\underline{2c}^{1}$ and $\underline{2f}^{5}$ have been previously described. Physical (boiling points are uncorrected and determined by microtube distillation) and spectral data (IR: CCl₄, cm⁻¹; ¹H NMR: 90 MHz, CDCl₃, δ vs. int. TMS; ¹³C NMR: 20 MHz, CDCl₃, δ vs. int. TMS; MS: 70 eV, m/z) for the other products are given below: <u>2a</u>: bp 120-122 °C(6 mm); IR:3425(NH), 1725(COO), 1705(CO); ¹H NMR: 1.2(s, 9H), 1.25(t, 3H), 4.15(q, 2H), 4.25(d, J=5 Hz, 2H), 5.65(br, 1H); ¹³C NMR: 14.6 (q), 26.4(q), 42.7(s), 46.2(t), 61.2(t), 151.6(s), 210.5(s); MS: 187(M⁺, 1%), 142, 130, 103, 102(base), 85, 74, 57.

- <u>2b</u>: bp 98-99°C(1mm); IR(CHCl₃) 3425(NH), 1720(COO), 1705(CO); ¹H NMR 0.9(t, 6H), 1.25(t, 3H), 1.6(m, 4H), 2.5(t, 2H), 4.05(q, 2H), 4.3(m, 1H), 6.0(d br, 1H); ¹³C NMR: 8.9(q), 13.5(q), 14.4(q), 16.9(t), 24.6(t), 41.6(t), 60.6(d), 60.9(t), 156.3(s), 209.1(s); MS: 201(M⁺, < 1%), 130(base), 102, 86, 71, 58.</p>
- <u>2d</u>: bp 146-148°C(4.5 mm); IR: 3420(NH), 1710(C00+C0); ¹H NMR: 0.9(s, 9H), 1.25 (t, 3H), 1.0-2.8(m, 7H), 3.8-4.5(m, 1H); 4.1(q, 2H), 5.7(br, 1H); ¹³C NMR: 14.5(q), 27.6(q), 28.8(t), 32.4(s), 37.1(t), 40.0(t), 45.9(d), 58.8(d), 60.9 (t), 156.1(s), 207.7(s); MS: 241(M⁺, 8%), 185, 184, 183, 156, 138, 137, 128, 111, 110, 109, 95, 90, 84, 83, 82, 81, 80, 69, 67, 62, 57(base), 56, 55, 43.
- <u>2e</u>: mp 120-122°C; IR: 3425(NH), 1725(COO), 1690(CO); ¹H NMR: 1.25(t, 3H), 4.15 (q, 2H), 4.7(d, J=5 Hz, 2H), 5.8(br, 1H), 7.4(m, 3H), 8.0(m, 2H); ¹³C NMR: 14.6(q), 47.9(t), 61.3(t), 127.9(d), 128.9(d), 134.1(d), 137.6(s), 156.6(s), 194.3(s); MS: 207(M⁺, 5%), 179, 162, 150, 118, 106, 105(base), 102, 77, 51.
- <u>3</u>: bp 100-103°C(4.5 mm); IR: 1655(C=N); ¹H NMR: 0.2(s, 9H), 1.4(t, 3H), 1.6-2.2 (m, 6H), 4.3(q, 2H), 4.6(m, 1H); ¹³C NMR: 1.8(q), 14.4(q), 23.3(t), 34.6(t), 41.8(t), 66.7(t), 90.8(d), 107.6(s), 162.8(s): only one isomer, most probably the <u>cis</u> one; MS: 243(M⁺, 59%), 228, 215, 214(base), 186, 170, 157, 100, 75, 74, 73, 71, 59, 55, 45.

Acknowledgment. This work has been financially supported by National Research Council (CNR), Rome - Progetto Finalizzato "Chimica Fine e Secondaria".

REFERENCES AND NOTES

- 1. Hiyama, T.; Taguchi, H.; Fujita, S.; Nozaki, H. <u>Bull</u>. <u>Chem</u>. <u>Soc</u>. <u>Jpn</u>. 1972, <u>45</u>, 1863.
- 2. Hiyama, T.; Fujita, S.; Nozaki, H. Bull. Chem. Soc. Jpn. 1972, 45, 3500.
- Mayer, D. in Houben-Weyl, Methoden der Organischen Chemie, 4th edition, Müller, E., Ed.; G. Thieme Verlag: Stuttgart, 1977, Vol. VII/2c, p. 2253.
- 4. Buckley III, T. F.; Rapoport, H. J. Am. Chem. Soc. 1981, 103, 6157.
- 5. Pellacani, L.; Pulcini, P.; Tardella, P. A. J. Org. Chem. 1982, 47, 0000.
- 6. Brown, C. A. J. Org. Chem. 1974, 39, 1324.
- 7. Synthesized according to the House method (see ref. 8): bp 70-72°C(20 mm); IR (CCl₄) 1670 cm⁻¹; ¹H NMR (CCl₄) δ 0.15(s, 9H), 0.7-2.3(m, 12H), 4.35(t, 0.5H, (Z)-isomer), 4.5(t, 0.5H, (E)-isomer); MS m/z 186 (M⁺), 171, 75, 73.
- House, H. O.; Czuba, L. J.; Gall, M.; Olmsted, H. D. <u>J. Org. Chem</u>. 1969, <u>34</u>, 2324.
- 9. Prepared by the House method (see ref. 8): bp 133-134°C(20 mm); IR (CCl₄) 1670 cm⁻¹; ¹H NMR (CCl₄)δ 0.15(s, 9H), 0.9(s, 9H), 0.9-2.5(m, 7H), 4.7(m, 1H); MS m/z 226(M⁺, 22%), 211, 128(base), 75, 73, 57.
- 10. The reaction mixtures coming from <u>1a</u> and <u>1e</u> dissolved in $CHCl_3$ have been treated at room temperature with silica gel (containing 10% of water) for 20 hrs, in order to have <u>2a</u> and <u>2e</u> as the main components. However, in the latter case also phenacyl alcohol ($C_6H_5COCH_2OH$) was produced.
- 11. Attempts to transform <u>3</u> into <u>2f</u> were unsuccessful under the different conditions already used for cleavage of: a) acetals, i) SiO₂, 10% oxalic acid, CH₂Cl₂, ii) SiO₂, 15% H₂SO₄ (Huet, F.; Lechevallier, A.; Pellet, M.; Conia, J. M. <u>Synthesis</u> 1978, 63); b) silyl ethers, KF on Celite (1:1), 2M in CH₂CN (Manis, P. A.; Rathke, M. W. <u>J. Org. Chem</u>. 1981, <u>46</u>, 5348); c) oxazolines, i) 4.5N HCl, 40-50°C, ii) 4.5N HCl, reflux (Meyers, A. I.; Knaus, G.; Kamata, K. J. Am. Chem. Soc. 1974, <u>96</u>, 268).
- 12. Coates, R. M.; Sandefur, L. O.; Smillie, R. D. J. Am. Chem. Soc. 1975,97,1619
- 13. Pellacani, L.; Persia, F.; Tardella, P. A. Tetrahedron Lett. 1980, 21, 4967.
- Enol ethers: Brown, I.; Edwards, O. E. <u>Can</u>. <u>J</u>. <u>Chem</u>. 1965, <u>43</u>, 1266; Kozlowska-Gramsz, E.; Descotes, G. <u>Tetrahedron Lett</u>. 1981, <u>22</u>, 563. Enol acetates: Keana, J. F. W.; Keana, S. B.; Beetham, D. <u>J</u>. <u>Org</u>. <u>Chem</u>. 1967, <u>32</u>, 3057.
- 15. Wohl, R. A. Helv. Chim. Acta 1973, 56, 1826.
- 16. Blanco, L.; Amice, P.; Conia, J. M. Synthesis 1981, 289 and refs. therein.

(Received in UK 2 December 1982)